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I 

INTRODUCTION 

The present report, which i s  the third of  a series of interim reports, deals 

with the studies on "Parameter Optimization" carried out during the period, 

March 1, 1964, to June 30, 1964, under the contract NAS8-5411. It i s  a 

preliminary report and the results should not be considered final. 

In the preceding report the effects of  measurement errors o f  the observables 

on the orbital parameters i n  general tracking operations were discussed and the 

corresponding equations derived. Two groups of relationships were derived, 

namely, those where the equations contain only observables and those of  another 

group where the orbital parameters were contained i n  the equations. The combin- 

ations o f  quantities involved in these relationships are instructively displayed i n  

Tables 1 and 2 of Interim Report No. 2, pp. 1 1  and 12. 

The error study i s  continued i n  this report and the results presented in Part 1 .  

A table similar to that o f  the preceding report shows again the combinations of  

quantities involved i n  the derived equations. The two sections of  the table are 

shown in Part I V  as Appendix. Part I contains the error study of the geometric 

case where only distances and angles as observed quantities are involved. In the 

present study, the equations contain only orbital parameters. The equations are 

considerably simpler than those containing only observables and they are better 

accessible for the evaluation. Section B and C deal with the dynamic case. As 

a supplement to the equations of  Interim Report No. 2, the present relations 

contain only and in a few cases primarily measured quantities. The equations 

become more complicated but the relationships w i l l  have to be known for the 

later optimization of tracking operations. 

In Section D errors are being considered applying normalized distances as 

one of the measured quantities. The distance i s  normalized with regard to the 

maior axis o f  the el l ipt ic orbit which i s  proportional to the total energy content. 

Since the normalization reduces the variable orbital parameters to one, namely 

the eccentricity, the results become very instructive. The derivations lead to 

relationships which clearly indicate regions and time periods along the orbit where 
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the tracking errors w i l l  become small and where they w i l l  become excessive. 

Part II deals with an attempt to minimize the errors of the orbital parameters 

caused by deviations of  the observed quantities for the geometric case. The 

observed quantities are three positions along the orbit. The minimization of the 

error o f  the parameter p leads to conditions which are typical for a circular 

orbit. This orbit then represents a minimum-error orbit under the assumed conditions. 

Simultaneously with this analytic optimization a tentative computer study was 

begun as briefly described in Section B of Part II. 

Heretofore the study was dealing w i th  observables related to a geocentric 

coordinate system. Since the practical tracking operations w i l l  involve measurements 

to and from stations on the surface of the earth, coordinate transformations have 

to be taken into account. These coordinate transformations w i l l  on one hand 

directly affect the error relationships and the parameter errors, on the other hand, 

errors of  the position of  the ground stations w i l l  cause additional errors of the orbit 

determination. A review o f  the equations by which these transfonnations can be 

carried out i s  presented i n  Part 1 1 1 .  A station-centered system, a vehicle born 

inertial, and a vehicle-born, orbit-aligned coordinate system are being discussed 

and the corresponding equations described i n  the three sections o f  this part. 
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NOTATION SHEET 

e Eccentricity 

E Total energy 

L Angular momentum 

a Major axis 

Orientation of major axis 
0 

8 

G Gravitational constant 

Mass of earth 
e 

M 

Mass of satellite 
S 

M 

e K GM 

2 .  C r 8 = Areal velocity = KP 

r/a normalized radial distance 5 
A 
e. Unit vectors 

I 

3 Rotation vector of earth 

I Inclination of orbital plane 

R Location of ascending node 
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I. CONTINUATION OF ERROR ANALYSIS 

The orbital parameters of  a given satellite orbit may be determined by 

making a number of  measurements o f  the position, velocity, velocity components, 

etc., o f  the orbiting vehicle. In Report No. 1 the equations for determining an 

orbit from a minimum number of  such measurements were given. 

errors cause a l l  the measurements to be uncertain to some extent. I n  the work 

of Report No. 2 some of  the effects of Instrumental errors on the uncertainty of 

the orbital parameters were investigated. It should be pointed out that the error 

analysis may be taken from two approaches. (1) The equations of the errors of  

the orbital parameters due to deviations of  the measured quantities may be derived 

from the general equations of the coordinates i n  terms o f  the orbital parameters, 

as in No. 2 part II B - C. 

due to deviations of  the measured quantities may be derived from the equations 

for the parameter i n  question i n  terms of the measured quantities only. The equations 

contain only the results of measurements, as i n  No. 2 part II A. 

Instrumental 

(2) The equations for the errors of  the orbital parameters 

The first rne thd  (1) gives equations which w e  simpler i n  form than :hose o f  

the second method, b d  thz results are nof as readily applicable to the error 

introduced by a particular set of measurements, where errors can occur i n  several 

variables cancurrently. Thus, for completeness, thz foIIoNing includes the error 

analysis for position measurernanks from the equations of  the orbital parameters, and 

the analysis for the dynamic cases with only measured quantities or observables as 

variables. This completes the error anglysis o f  ths cases coniidered. 

In Section C, narmilizcltion i s  applied for simplifying the error equations 

based on position measurements. 

velocity measurements, n3 similar simplification can be readily obtained. 

In the dynamic case, based on position and 

A.  Error Analysis for Position Measurements From the Orbit Equation 

The equation for the orbit has been written i n  the form: 



-5- 

where P = a ( l  - e )  2 = L / G M M  2 2 
e s  

2 .  = C2/K and C = r 8; K =  GM . 
e 

Consider now an error Ar i n  r. Writing the polar equation in the form 

C 2 = K r  ( l + e c o s  e )  

we get 

where 

Thus 

and 

2c - 2 r @  = - - -  ac 
ar r 

3 c) 

CL 3KP - -  ae 4c' K C O S  @ 7 = - - - -  
a r  r r r 

2 3P 3 a (1-e ) - -  = ae ar- r cos E. r cos f? 

For the error i n  P we write 

C2 p = -  
K 

and 

or 

4c2 4P - -  ap - 2 c  ac - a r - - X - a r - - -  rK r 

4 ( 1  + e c o s  e ) .  ar= 

For the error in a we use the equation 

2 P = a (1-e ) 
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and get 

6 ae P 
r COS 8 r cos €! 

2P (2 cos 8 + h e )  - - 4p + 2 aa 
(l-e ) ar = - There fore 

r 

or aa - 2 a (2 cos 6 + 3 ae) ar- r cos 6 

Finally, for the error i n  e we write: 
0 

P = r [ I  + e c o s ( e  - e o ) ]  

0 ae 
a6 Then 

+ r COS (e -eo) ar eo) ar ] + e  cos(6  - eo) + ersin (e - ar= 

or 

which gives 

0 
a e  

- -  3P 3P = er sin ( e  - eo) 
r 

Now consider an error A 6 in the other variable C. We write the polar 

equation i n  the form 

a (1 - e  2 ) = r ( l  + e  cos e) 

then 
ae ae re sin 6 

cos E ae - - 2 a e -  = ae 
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or re sin 8 - -  - ae 
a e  r cos @ + 2  ae 

Similarly we have 

ap ae - = r cos t? -/ -: re sin 8 a e  ae 

2 
er cos 8 sin e 
r cos e + 2 ae 

L - - re sin @ . 

Thus 

ap 2 aer sin 8 
ac  r cos e + 2 ae 

- =  

..- ' .., (, 

Finally for the error i n  €' we write 
0 

p = r [ l + e c o s ( e - e o ) l  

a e O  

a e  

and get 
- ae - re s i n  (6 &eo) - - - -  a' - r cos ( e  -eo) a6 a e  

gives 
a e  

and - Substituting for - ae a e  

2 2 
er cos ( e  - eo) s i n  (e -So) + 2  ae r sin (e  - eo) 

- 0 
ae 
a e  r cos (e - 0 ) + 2 ae re s i n  ( 0  -Go) - - 

0 

r cos (e  - eo) 
r cos ( e  - eo) 

+ 2 a e  

+ 2 ae 

0 
ae 
ae - -  - = I  (7) 

From the equations above, one can determine the effect on the orbital 
parameters, o f  a small deviation in either of the independent variables r or 0. 
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B. Error Analysis for the Dynamic Case With Observables as Parameters 

(1) Determinations from Radial Velocity Measurements. 

From the results of part I I  of  Report No. 1, we have the following expressions 

for the orbital parameters 

positions on the orbit. 

1 - -  - L2 
P =  r )  

M L M G  M G  
s e  e 

i n  terms of two radial velocity measurements at two 

) + i2 - r ,  
1 1 2GM (--- I e r l  '2 

I I 

1 1 
2 2 

- - -  1 ' 1  r 2  J 

GM M 
- e s  
- E = -  = 1/2 M (il 2 + -) L2 - GM M 

e s  

M2 r2 rl 2a S 

S 

GM M 
e s  (9) 

r -  '1 

2 EL" 
l + 2 2 2  M M G 

s e  

8 can be determined from one o f  the two equations 
0 
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For the error analysis we need the partial derivatives 

Starting with the parameter P we have 

P 

thus 

ap  1 

1 - - 
M ~ M  G 

s e  

- L2 - 
M ~ M  G 

s e  

a L2 

a ‘1 
- 

+ 

For later use we note that 
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F o r  an error i n  i we need 

ap 1 - -  - 
M ~ M  G 

s e  

For later use we note that 

- -  - a L2 
a; 

1 

2 2  

s e  

We consider next the eccentricity e which i s  defined by 

e =  JT M M G  

Noting also that 

GM M 1 e s  
E = /2 M S (. + M2:y2)- r 

we get 
2L2 a E  

+ 2 2  2 a r ,  
ae  2 E  a L2 

a ‘1 
2e- - 

M M  G 
s e  

- 2 2 2 a r l  M M G  
s e  

GM M 
e s L2 + 2  

r l  

+ 2L2 
2 2 2  M M G  
s e  

L J 
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i s  given by equation (14) . For the error in e from an error in i 

ae 
we need - . Thus 

a ‘1 

2 1 

s e  

L2 
T 2 )  
MS rl 

‘1 
d} a ; ,  

2 

M K2 
- -  - 

S 

. 2  {; L2 + M s [ k  + L2 

Ms2 < 
i s  given by equation (16) . where - a L* 

a; , 
Finally, for the third parameter, 0 we use equation (12) and get: 

0 

0 a a e  
- -  - 
a ‘1 a ‘1 sin - Y s i n  8 

1 r cos e2 
+ - 

sin e, - Y sin €I2 1 2 sin e2 a 3 ”:, y cos e2 - cos el 
(sin 8, - Y sin e2) 

L J 
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! 

This expression may be simplified by use o f  the trigonometric identities for the 

sum and difference o f  two angles. Thus 

From the expression for y , 

‘2 

‘1 
y = - .  

2 
s e  

s e  

L 2 -  r l  M M G 

L ~ - ~ ~ M  2 M G 

we get 
2 

2 
‘2 1 L2 - rlMs M G 

e + -  r2 - - .  a Y  -- 
rl L, - r2 M:M G a 

e 
- r L~ - r 2 ~ S  M ~ G  

r2 

‘1 
+-  ‘2 L2 - -- 

s e  
- 

r 1  L2 -r2M:M e G 

i s  obtained from Equation (14) . Thus we have: 
a L2 ar, where 

0 
a e  sin (Q1 - e,) 

r r 2  L2 
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For errors i n  I: we need 

sin (e1 - e2) ae, 

where 

a Y  r2 1 
L2 - rlM 2 M G aL2 s e  

- -  - 
2 2 5  

- 

‘1 L2 - r2M M G a; 
s e  

(23) - -  - 

and - aL2 i s  obtained from Equation (16) . Finally for errors i n  the angle 0 3 i  

we need 

- -  0 a tan 
a e  

- ae, ae  1 

sin e l  (7 COS e2 - COS e 1) 
- 1 - 2 cos el - 

sin e l  - Y sin e2 (sin 8, - Y sin e2) 

1 - Y cos ( e 1  -e2)  
- (24) 2 - 

1 - 2  ycos(e l  - e 2 ) + y  

From the above analysis one can determine the effect on the orbital parameters of an 

error i n  any one o f  the measured quantities i n  the determination from radial velocity 

measurements. We w i l l  defer unti l later the consideration o f  special cases. 
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(2) Determination From Angular Velocity Measuremenf 

Let us consider the results of part 3 o f  No. 1 where the orbital parameters 

were determined From the measurement of the angular velocity o f  the orbiting 

vehicle. (This quantity might be determined from position measurements at  two 

times, t and t as mentioned in No. 2.) 1 2 

M G  
e 

M G  
e 

Y cos e2 - cos e,  
6 = tan-’ 

0 ( sin 8, - y sin @ 2) 

and 

For the error analysis we need 

Starting with the equation for P we have: 

and 

M G  e 
a 6 ,  
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We note that the expression for 8 i s  exactly the same as those considered 
0 

in Part A where radial velocities are measured at 8 and 8 1 2’ 
ca Icu lated 

Thus we have already 

(equations (21) and (24)) and - a eo 
a e  

a e  

a e  

a 
a ‘1 

0 
Thus we need only calculate - for the present case. This i s  t r iv ia l  since 

we see immediately 

0 
a e  

a e  
- -  - 0 .  

Thus the effects of  errors i n  8 , 8 , and r on the determination of  8 i s  complete. 
0 

Finally we find the errors in e from Equation (27) . Thus 

3 .  2 

and 

3 rlL 4 ,  

M G  
e 

- sec (e1 -eo) ae ar,- 

sin (e - eo) 
ae 

T (33) 

From these equations one may obtain the errors i n  the orbital parameters which 

result from instrumental errors in the determination o f  the orbit by angular velocity 

measurements. 



-16- 

D. Errors Derived from Normalized Orbital Parameters 

The geometrical orbit equation for 9 = 0, i s  
0 

r = -  P 
1 + e  cos @ , (34) 

2 p = a ( l - e )  
where 

In the following, we are going to normalize a l l  our quantities by the 

major-axis "a" . Later it w i l l  be shown that this approach gives a considerable 

simp1 i fication. 

Dividing Eq. (34) by a, we find 

- -  r P/a - 
a 1 + COS e 

2 1 - e  - - 
1 + e cos 9 (35) 

Introducing a new parameter 5 , which i s  the normalized parameter, 

such that 

(36) 
2 yields 

( l + e c o s e )  5 = ] - e  

1 gives 
Taking the partial derivative of Eq. (36) with respect to 

l + e  cose! + 
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Thus 

ae - 1 - ecos @ 

'5 f cos8 + 2 e  
- =  

From the normalized geometric orbit equation we have 

ae - 1 ap - -  
a at 

I + ~ C O S  e +  ~ C O S F )  - - 
a? 

Substituting Eq. (37) into Eq. (38) we find 

(37) 

Similarly, the following results can be obtained for the error of the eccentricity 

and parameter p from partial differentiation with respect to the angle @ . 

e 5 sin 8 - -  - a e  
COS e + 2e a e  

2 aP = - 2 e  a g  sin 8 
a e  -cos 8 + 2 e 3 

- 

We can eliminate 5 from above equations by substituting 

This gives, 
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where only e and 8 are contained i n  the equations. 

9 can be substituted for the left-hand and ag a e  

It should be noted that 

sides respectively. Since p 

normalized with regard to "a" i s  a function o f  e only, this case can be included 

in the error analysis of e I so that 

2 - ( l + e  cos e )  
2 I  

- i3e 

2 e  + cos E! (1+ e ) 
ag- 

2 
e ( 1  - e ) sin 8 

2 
2e+cos@ ( I+P ) 

- - ae 
a E  

Since we know 
2 

r 1 - e  - - -  -- - 
1 + e  cos€! 

' 5 - a  

e 2 + 5 c o s e e  + t - 1  = 0 , 

where 

cos 8 t f  - e -  

2 
- I 

J q - ! + l  2 2  . 
9 =  

(44) 

(45) 
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It i s  obvious that q should have a real value for a true orbit, 

There fore 

2 2  

4 
+ E c o s e  - + 1 >  0 .  

Further, for an ell iptical orbit, we should have 

then 
COS e 

q >  - 2 

a e  a e  
From equations of  - and we can eliminate e and i n  terms of  f . 
This w i l l  give us 

(46) 

where 

From here we can see that i n  the region of  0 < 5 < 1. This wi l l  guarantee 

us an el l ipt ical orbit and finite errors everywhere ( q always real and 

0 < e < 1, ) . 
el l ipt ical orbit and finite value of errors wi l l  exist only within a certain region. 

This shows i t  wi l l  depend on 5 . 

By increasing 1 then this nice situation no longer exists. An 
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In  the following, we show where the breaking points are. 

It i s  known 

2 2  5 cos e 
4 - [ +  1 = 0. 

It i s  obvious that for 1 no infinite slope exists. The breaking points only 

exist when 9 > 1 . 
The following three figures show graphically characteristic properties of  

the preceding error relationships. These figures are based on normalization with 

regard to the major axis "all with 5 = r/a as one of the observed quantities. By 

this normalization only the eccentricity remains as variable orbital parameter. 

The figure shows the relationship among the normalized observed distance 5 , 
the observed angle e , and i t s  corresponding errors. In F igure 1 the relationship 

between eccentricity and observed angle 6 i s  shown where f 
From the figure we can see that at F < 
of  0 smoothly. Under the condition 5 > 1, the curve becomes piecewise 

discontinuous. For instance at 5 = 1.2 where 32 < 0 .( 148' "e" becomes 

imaginary and no real solution exists. The dots at the ends of the curves indicate 

in the figure the limits o f  the real solution. Figure 2 and Figure 3 show the errors 

of the eccentricity as a function o f  the observed angle e using 5 as a parameter. 

Similarly as i n  Figure 1 for 5 < 1 , smooth continuous curves exist. For 1 > 1 , 
the curves become discontinuous and have the same invalid regions as i n  Figure 1 .  

This means that no ell iptic orbit can be found at the positions indicated by the 

parameters i n  these regions. 

i s  a parameter. 

1 .O the eccentricity varies as a function 
4 -  

0 
- - 

- 
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11. OPTIMIZATION OF INDIVIDUAL PARAMETERS 

In  the preceding work (part 2 No. 2 and 1,#1 ) the determining equations 

for errors i n  the orbital parameters due to errors i n  certain variables have been 

presented from essentially two approaches. The relationships are, i n  many cases, 

quite complicated. In any attempt to optimize a given set o f  orbital parameters, 

one would l ike to know the behavior of the errors of the parameters as a function 

of  the determining variables. That is, when an error i n  a given parameter i s  

minimum, and when it i s  maximum under a given set o f  measurements. This analysis 

may be accomplished by either of two methods. 

may be differentiated partially and set equal to zero, and thus determine under 

what conditions an extremum of the given error exists. 

the parameters may be programmed on a computer and the minimum errors determined 

by varying the values of the independent variables over some range of values. Each 

o f  these methods has i t s  advantages and disadvantages. We describe below how both 

techniques are being employed. 

(1) The equation for an error 

(2) The equations for a l l  

A. Minimization of  Errors by Differenticition 

The conditions have been determined under which errors occuring i n  the 

orbital parameters are minimum as determined by three position measurments. 

These results were obtained by differentiation of  the equations for the various 

errors and setting the expression equal to zero, thus determining the conditions under 

which an extremum exists. The results o f  this calculation are given below, and 

details of the analysis for one parameter are shown. 

Let us f i r s t  examine the error of - from Report No.  2, Page 15 
a ‘1 

A 9 2  &23 A ‘31 2 
sin A o~~ [ sin (-) sin (-) sin (7) I / [ &  1 (48) 

2 2  - 
‘2 ‘3 2 2 

ap = - 
arl 

where 

~e~~ = e2 - e 1  , ~e~~ = e3 - e 2 ,  ~ 8 3 1  = el -3 
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and 

sin ( e l  - e3) . ‘3 ‘1 
sin ( e3 -e2) + sin (e2 - e 1 )  + 7 ‘1 ‘2 ‘2 ‘3 6 = 

The necessary conditions f o r  having an extreme value of 

Proceeding with these partial derivatives, we will  obtain six equations such as 

) I }  2 2  A @12 ‘23 Ae31 - -  r sin [ sin (-) sin (7) sin (- - { - r 2  2 2 
a f  

25 a 6  

- r2 sin (e2 - e 1 )  + - ‘3 sin (e1 -e3) = 0 
2 2 

2 A % ‘23 he31 1 
7 ) sin (-) sin (7) 1 1  = {  - 2 ‘  r sin (A8 ) [sin (- 2 

a f  ar, 2 3  23 2 

2 2  A O12 *@23) Ae31 25 as - { -r2  r3 sin ( A @  ) [sin (- )sin (- sin (- 23 2 2 2 

(49) 
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&23 “3 1 2 sin A e23 sin ( 12) sin ( - sin ( -) I I - = { - r2 r3 
A0 2 2  
2 2 2 2 

‘2 

- 
= o  - { - r2 2 2  r3 sin [ sin (2 12 ) sin (‘7 “23 ) sin (‘2 A e31 2 a 6  

which gives 

sin ( e2 - e 1 )  + - ‘3 sin (e3 -e2)  + - ‘3 ‘1 sin ( e 1  -e3) ‘1 - 
2r2 2 2 

Since 

then 

Similarly, 

r 1  r2 r3 are not zero 

sin ( e l  - e,) = 0 

= o  1 as s - a ’ 3  - a f  

a ‘3 ‘3 
- =  0 

sin (e2 - e l )  = 0 . 

For 

= o  a f  

ae, 

(5 3) 
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e '  1 '3 - e2 ) sin (- 1 - 3) 
e2 - e 1  

2 2 2 2 
( - - ) s i n (  sin (e3 - e2) 1 cos ( 

a r  2 2  - = t - r 2  r3 
a '1  

1 '1 -'3 1 - 
) T  s2 

cos ( - 2 ) sin (- e2 
2 2 + s i n  ( 

12 A '23 z as 
2 2 

2 s4 ae, 
sin A823 [ sin (-) sin (-) sin (-)I} - - + { - 2 r 2  r3 

2 2  

(54) = o .  

e2- '1 ) sin (- ) '1 -  '3 
2 

- cos (- ) s i n ( -  ) s i n  (- 
2 ) - cos (- 

el - e 3  63 - e2 
2 

1 e2 - e l  
2 2 2 

e3- e2 ) sin (-) '1- '3 I [ - r  r cos (e2-',) 
2 1 2  

) sin (- sin (-) 1 6 + [ - s i n  (- e3- '2 ' 2 - 9  
2 2 2 

(55 1 + r r cos @,-e3) I = 0. 3 1  

I +  '2 '3 e2- '1 ) sin (62-  e,)  + '4 cos ( - '1- '3 ) sin (- r r cos (- 
2 

'2- e l  
2 

1 
4 1 2  2 

'1- '3 
2 ) sin (-) sin ( e1-03) cos (- ) sin (€I3- 62) + 7 @l- '3 sin (- 

2 
e2- '3 '1 

2 

'1 '2 - - cos (- '1- '3 ) s i n  (- e2- ) sin (e2- el) 
2 4 2 



-28- 

e - e  
cos ( - '1- '3 ) sin (2') 2 (e3- e2) 

'2 '3 
-4 2 

) sin (e1 - e,) ) sin (- @ 2 - 5  '3 '1 '1- *3 
2 2 - - cos ( 4 

COS (81- e31 = 0 (56) 
- e 3  

) sin (- - r r sin (- 3 1  2 
@2- 9 

2 

e2 - e e - e  '1-'3 2 2  cos ( e3- e2) sin ( -l)Sin (- 2 ) s i n  (7) - = I + r 2  r3 
a f  
a '2 2 2 

82-81 1 03- e2 )sin (-) '1- '3 
2 sin (e3- e2) cos (- ) - sin (- 2 2  

- '2 '3 2 2 2 

O2- 81 '3-'2 1 '1-'3 1 
-T 6 2 sin (e3- 02) sin (-) cos ( -) - sin ( 2 2  

+ '2 '3 2 2 2 

2 2  e3- e2 e2- e3- '2 '1- '3 + { -r2 r3 sin (-)t sin ( 7 ) s ' "  (-) 2 sin (-+I1 

2 6  as - = o .  54 ae2 

'1- 
2 ) sin (- '3- '2 ) sin (- 2 COS (e3- e2) sin (- 

O2- e l  2 2  
{ '2 '3 2 

(57) 
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2 2  

2 ‘2 ‘3 sin (e3- e2) cos (-) %- sin (-) e3- e2 sin (7) ‘1- ‘3 2 2 
- -  

e - e  2 2  

2 sin (e3 - e2) sin (-) cos (-) ‘3- ‘1 s in  (- 3)1 ‘2 ‘3 
2 2 2 + -  

‘2 ‘3 sin ( e3- e2) + - ‘3 ‘1 sin (e1-e3) 1 sin (e2-e1) + 2 ‘1 ‘2 I- 2 2 

‘1- ‘3 
) sin (-) 2 cos ( e3- e,) sin (-) sin (- a e  2 2  @2- e3- e2 

a e3 
2 2 - = { - r 2  r3 

‘1- ‘3 
) sin (-) sin (63- e,) sin (7) - cos (- 

e 2 - e ~  1 -82  
2 

2 2  
- ‘2 ‘3 2 2 

2 2  *2- @ 1  @3- @2 2s  a 6  8 m3= + {  -r2 r3 sin A823 [ s i n (  -> sin (-) sin (-1 11 2 2 2 

1 %- % ‘1- @3 ) sin (-) sin (- 2 2 cos (e3- e,) s in  ( - 2 2  
{ - r2 r3 

‘2- e~ 
2 



-30- 

e2- e3- e2 ‘1-’3 sin (e3- e2) sin (-) cos (-) sin (-) 
2 2 2 

1 2 2  - -  
2 ‘2 ‘3 

2 2  

2 
e3- e2 ) cos (- e1-e3)1 

2 ) s i n  (- sin (e3- e2) sin (- e2- e l  
2 

‘2 ‘3 
2 + -  

(5 9) COS (e,-e3) I = o ‘3 ‘1 
cos ( e3-e2) - ‘2 ‘3 + [-- 2 

From Eq. (52) and (53) we obtain 

e2 - 8 = 0, or TI 1 

- e  = 0, or TI 3 

e2 - e 3  = 2 TI 

using (60), (61),&(62)together with (56) yields 

r2 = ‘3 

By the same token, from 

‘1 = - ‘3 

= -‘2 . ‘1 
also from (59) we see 

From these results where 

1 ‘ 1  I = 1‘21 = b 3 (  
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e, - el = 
L 

These are quite clear to us. It wi  

conclude that the circular orbit w 

measurements . 

I give us a circular orbit. Therefore, we 

II give us minimum error o f  (-) aP from the 
a ‘1 

By the same token, we can demonstrate for other error quantities such as 

ap ae 

9 ar, 
, . . . . . . . . It w i l l  give us the same conclusion since the method 

i s  quite straight forward. We are going to omit the performance here. 
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B. Minimization Study By Numerical Evaluation 

Due to the complexity of  the preceding equations, the optimization of a 

given parameter results in a very lengthy calculation, as can be seen by results 

in Part A above. However, the behavior o f  the equations may easily be investi- 

gated by numerical techniques. For this approach, the equations for the 

determination o f  the orbital parameters by a particular set of measurements are 

programmed for a computer. With such a program, the effects of  instrumental 

errors on the determination of  the orbital parameter may easily be investigated by 

varying the observed quantities over some range which corresponds to the size of  

an observatorial error. This method has the added advantage of  giving an exact 

number for the percent error in the determination of  any given parameter for a 

given percentage error in the measured quantities. With this information, the 

values o f  the measured quantities may be varied over the entire range o f  the 

actual orbit and the conditions under which the error in a given parameter are 

minimum may be ascertained. 

The numerical technique i s  being employed for the error minimization for 

both the position and dynamic variable methods of  determining the parameters o f  

an orbit. Results obtained to date are only of a preliminary nature, the object 

being chiefly that of checking the Fortran program on sample data. We w i l l  defer 

unt i l  l i t e r  a description of the numerical minimization program and i t s  application 

to the optimization of  the orbital parameters. 
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111. REVIEW OF COORDINATE TRANSFORMATIONS 

A. Consideration of  A Station-Centered Coordinate System 

A l l  o f  the dynamic error analysis thus far presented has been in terms of  

variables and parameters in the earth centered coordinate system. However, 

actual measurements are made by tracking stations, or in relation to stations on 

the surface of  the earth. Since the measurement of tracking error are known for 

the tracking station on the surface of the earth, the results obtained heretofore 

have to be modified, and the errors expressed in  terms of  the measurements i n  

the station-centered coordinate system. 

with respect to the center of the earth i s  not exactly known. Thus, even i f  i t  

were possible to obtain exact measurements at the tracking station, errors would 

be introduced i n  transforming to the dynamic, earth centered, coordinate system. 

It i s  the purpose of  this section to study the exact transformation procedure. 

Further, the location o f  this station 

In a future section, the error effects w i l l  be studied. 

Consider a terrestrial station-centered or loca I coordinate system located 
+ 3 

on the surface of the earth at R from the center o f  the earth. Let R rotate 

with angular velocity R, let R' denote a point expressed in the local coordinate 

system, and let R denote the same point expressed in the fixed, earth centered, 

0 0 + --t 

--t 

coordinate system. Let the fixed system be defined by the unit triad, e ,  , e2 I 
These definitions are PI 

3 '  e3 , and the local, rotating system by$', , 
shown i n  Figure ( 4 )  . 

, e 

+ 
Now, since R , Q f .  are fixed in  magnitude, we have 

0 I 

A d? 0 de I -+ 
- =  i"iJ - -  - Ci x e,. 
dt o dt I 

Let us have the following decompositions 

A 4 

R' = R'. e' 
i i  
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+ 
R = C. (t) Q 

I i 3 

CI 
e'. = a.. (t) 

i ' I  i 

where summation over repeated indices i s  used throughout. 

The corn-dinates or the tracking station, are C. (t) and a.. (t) represents 
I 1 1  

elements of the transformation matrix. We have 

A --t -+ + 
R = R + R' = C, e + R'. G'. 

0 r i  I I  

-t -t 

and find the geocentrical R expressed in  terms of the local R , 

where 

and 

+ R.' a.. ) R = C. e. + R I  a.. e. = (C. n A 
--t 

I I  I 1 1  I I I 1 1  i 

It i s  well known that 

, i jk  even permutation of I ,  2, 3 

- 1 , i jk odd permutation of I, 2, 3 
eijk = i" 

(0 otherwise 

Thus we obtain, taking into account the rotation of the primed (station-centered) 

coordinate system 

dR: 
- (67) = R X R  + C? x R ' + -  I +  

0 dt I 
- _ -  d x  - dRo + -  dR' 

dt dt dt 
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d R' 
= Q x R +  dt i - + +  

i 

A + -  P a e. 
dt pi I 

The subscript indicates the component i n  the station-centered system. We find, 

i n  terms of the position in this system 

Since we are concerned with the earth's rotation, we make e the north pole 

and we write 
3 

Thus 

-+ 
R =  n g3 

-5 C2 = 7 . 2 9 ~  10 rad/sec . 

A -+ 
a.. + C.) e 

i i  
R = (R;I 

1 1  

In equations (70) and (71), and C. depend on time. Let us determine 
akj I 

this time dependence. 

Since 
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or 

we have 

d C. 
- 
- ej3k dt I 

so that 

- Q C *  , - -  - dC 1 
dt 

- -  - dC2 
dt "C, I 

dt 

Solving this system, we obtain 

c1 (t) = 

C,(t) = 

C3(t) = 

C c o s (  G t +  6 )  , 

C s i n ( R t  + 6 )  , 

C3 = constant I 

(73) 

(75) 

2 2 1/2 
where C i s  a constant given by C = (C + C2 ) 
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Similarly, 

a d the constants A. 
I 

a. (t) = A. cos ( Q t  + 6.) , 
1 1  1 I 

(t) = Ai sin ( Q t +  bi) , 'i 2 

ai (t) = ai = constant . 

2 2 ) 1/2 
re 

i 1 + '  i 2  A. = (a 
I 

These results can be further simplified i f  we assume that at  some time t the 

direction o f  the axes, e. and e.  of  the coordinate systems coincide. We 

write with 

0 
A A, 

I I 

6.. for the Kronecker Delta. 
1 1  

a.. (t ) = 6 . .  , 
1 1  O 1 1  

and have i n  matrix notation 

(77) 

cos ( w  ) sin (w ) 0 

-s in  ( w )  sin ( w )  0 (78) 

which i s  clearly the transformation matrix for a rotation i n  the earth centered, 

equatorial plane. 
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B. Consideration of  a Vehicle Born, Inertial Coordinate System 

Consider next an inertial coordinate system located i n  the vehicle. Let 
--t 

R 

coordinate system, and let R denote the same point expressed i n  the vehicle 

born coordinate system. Let this point rotate with angular velocity Q .  Let 

denote a point on the surface of the earth, expressed i n  the earth centered 
0 

--t 

+ 
R denote the vehicle location with respect to the center o f  the earth. Let the 

earth centered system be defined by the unit triad, el , e2 , e3 , and the 

vehicle born system by 9' 
Figure ( 5 ). As i n  Section A, we have 

e; , Qt3  . These definitions are shown i n  1 '  

-+ 
- -  db - S x R o ,  
dt 

and 
A/  --t 

R '  = R'. e .  
I I  

I 

-P 

R = c. (t) c. , 
0 I I 

(79) 

fi  9. = a.. e. 
I 1 1  I 

However, since the primed coordinate system i s  inertial, the components of the 

transformation matrix a.. are constant and we have 
1 1  

P -P -+ -+ 
R = R - R' = C. - R'. e'. . 

0 i i  I I  

3 

We find for the geocentrical R expressed in  terms o f  the vehicle measured R'. 
I 

f i  3 
R = (C. - R'. a.. ) e. . 

I I 1 1  I 
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Similarly, as i n  Section A 

A 
or i n  terms o f  the geocentrical coordinate system, and using CJ = fi e3 

-t 

The C (t) have the same form as given in  Section A. I f  the directions or the k 
axes A/  e.  , 2. coincide, then we have the further simplification 

I I 

a.. = S .. 
1 1  1 1  

where 6.. i s  the kronecker delta, and obtain 
1 1  

3 3 f  
i 

R = (C. - R'. ) 
I I 

and 

f i  I;L Ck - R'. ) dR -- = (ei3k dt I I 
e. . 
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C. Consideration of A Vehicle Born, Orbit Aligned Coordinate System 

The geometry of this system i s  the same as i n  Section I I .  Here , however, 

the primed coordinate system i s  taken to be the intrinsic or Frengt triad. In this 

system, e'. i s  aligned with the tangent to the trajectory, e' i s  aligned with 
n A 

I 2 
/r fi  

the inward normal, and 2' i s  perpendicular to e' and e' in the right hand 3 1 2 
sense, i.e. C r 3  - - c', x gt2 . Th is  i s  shown i n  Figure ( 6  ) . The results 

are the same as in  Section I I ,  i.e. 

R = (c. - a.. R'. '2 
I 1 1 1 i  

d R' --+ 
dR 
dt - ei3k dt P i  

sick - - P a ] $ .  I . 
- - c  

(87) 

Here the transformation matrix a.. i s  a function of time. Let us determine this 
' I  

dependence. 

The geometry o f  the two body problem in  three dimensions i s  shown in 

Figure (7) . The intersection of  the orbital plane with the equatorial plane i s  

called the line of nodes. 

e, axis in  the equatorial plane. i i s  the inclination of  the orbital plane with 

respect to the equatorial plane. 

the line o f  nodes in  the orbital plane. The orbit i s  given by 

C i s  the angle between the l ine o f  nodes and the 
A 

e i s  the angle between the perigee point and 
0 

P 

1 + e COS ( 8 - eo) 
R =  I 

where 0 i s  measured i n  the direction o f  motion from the line o f  nodes in the 

orbital plane. 
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Now et3 i s  perpendicular to the orbital plane determined by Rand i. 

Clearly from Figure (7) 

n Ir 

e2 
= 

+ cos (i) P 

sin (i) sin ( Q) el - sin (i) cos ( R) n 
e'3 

3 I 

f i n  and consequently, with a.. = e'. e. 
' I  ' I  

a3, = sin (i) sin ( R) 

= - sin (i) cos (G) 
a 32 

= cos (i) a33 

In the orbital plane consider a polar coordinate system, 

i n  Figure ( 8  ), we have 

as shown 
r '  @ 

n -+ 
R = R e  

r .  

The tangent vector 6' i s  given by 1 

fi  dii;b 
efl = 

l c i $d@ ' 

Now 
d g  

r d z  
d e  d e  r d 6  
- -  - -  dR 2 + R - ,  

(91) 

(93) 
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with 

and 

Thus 

and 

2 
R e  

2 -  P sin ( e - eo) (94) - - Pe sin ( e  - e o )  - -  - dR 
dB (1 + e cos (8 - eo) ) 

(95) 
r h e - -  

de - e '  

A - -  
e '  sin (e  - eo) e + R R' e - -  dd 

de P r 

2 2 2  
sin (6 - e ) + 

0 
(97) 

2;j1/2 - - R2 2 (  1 + e cos (e - eo) - ( 1  - e  
1 + e COS ( 8 - eo) 

Thus 

'2; = - Ce sin ( e  - eo) h er + - c c  PU u~ e 

e We have the following decompositions for e and e r 



A + sin ( 6 ) sin (i) e3 

Q = -[sin ( e )  cos (Q)  + cos ( e ) cos i ) sin (~,l t1 

+ I- sin (6  sin ( 51) + cos (e ) cos (i) cos (Q)] t2 

A + cos ( e  ) sin (i ) e3 

In  these equations 

We then have for the a.. 
‘ I  

@ = P (t) , which can be obtained from Keplers equation. 

I - C e  sin ( e  - eo) [cos (e) cos ( Q )  - sin (e ) cos ( i )  sin (Q)  all - - Pu 

- L[ s i n  ( 8  ) cos (S2 )  t cos ( e  ) cos (i) sin ( Q )  1 uR 

- - -  C e  sin (e - eo) sin (e) sin (i) + C cos ( 8  ) sin (i) . a13 Pu 

A 
e’ 2 may now be determined from the equation 

t; - A nI - e; x e l  
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or in transformation form 

- 
a21 - a13 ‘32 - a 1 2 a 3 3  

‘22 = ‘11 a33 - a13 ‘31 

a23 = a31 “12 - a32 
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IV. APPENDIX 

The following two tables serve the same purpose as Tables I and I I  i n  

Report No. 2. They give a quick survey o f  the error analysis of the present 

report. The tabulation i s  the same as i n  the previous report with the exception 

of  an additional column which contains the normalized parameter 

in the geometric case. 

r 
3 =  T 

I n  this display, Columns 3 through 14 plus Column 16 contain the variables 

which are considered as measured quantities (observables) in  the previous 

analysis (Report # 1  and #2). I n  Column A i s  the error i n  one of the orbital 

parameters which i s  introduced by an error i n  one of  the observables which error 

appears i n  Column B. The errors in the orbital parameters are functions of the 

measurement error (Column B) and of the other variables and parameters of the 

orbital equations which are indicated by an x i n  the appropriate Columns 3 

through 14 and Column 16. 



ERROR A. NALY SI S 

(Geometric Case) 

(continued, see also Report No. 2, p .  11) 

Observables Para meters 

"2 

;2 e 2  
Remarks Eq. N o  

eo = 0 1 

37 

5 Bo = 0 

0 = o  
0 40 

g = o  6 

6 = o  
0 39 

g = o  3 

4 

TABLE I 
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e F '  

X 

X 

X 

X 

X 

ERROR ANALYSIS 

(Dynamic Case) 

(continued, see also Report No. 2, p. 1 1 )  

0 

x 

>( 

Observa b les 
+ 
' 1  

'1 

x x  

X 

X 

X 

x x  

x x  

x x  

X 

X 

X 

X 

X 

Pa rame te rs - 
81 

X 

X 

Eq. No Remarks I 
I 13 

l5 I 

21 1 
I 22 

24 I 
28 I 
29 I 
31  I 
32 I 
33 I 

TABLE 2 
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V. ERRATA SHEET 

for the Report No. 2 of “Parameter Optimization ” 

Page 7, last equation Should read: 

Page 21, 8th line 

2 
- R  

2 @12 A023 Ae3 1 
- 

Page 22, last equation 

ae 2 2 ac 
a v  K a  e - =  Q v (1-e ) 

A 2 - A 

‘2 (rl + A rl) 
e 2 = 2  - 

2 - R  
4 h e12 “23 “31 ’ 

ae 2 2 ac 
a v  av K a e  - = a v ( l - e ) - C  - 

Page 23, second equation 

ae 2 2  - a v2 (]-e2) - c2 K a e V a T  - ae 
K a v - = a2v2(1-e ) - c av 

Page 24, second equation 

ae = K (1 + e cos 0)  + K r  cos 0 - 
ar ar 

2C ae 2c=--  - K (1  + e cos e)  + K cos e ar 
ar 

th 
Page 24, 7 equation 
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Should read 

th 
Page 25, 5 equation 

ae a ~ =  1 + e  cos (e  - e  + r e -  cos (e  -eo) 
ar  0 ar -- a~ - I + e cos (e - eo)+ r arcos ae (e - eo) ar 

a 
eo) ar + er s i n  (e - 

0 
2 a e  

+ er sin (8 -eo) 3C e 
K 

- -  + -  - 
r 

th 
Page 25, 6 equation 

3p 3c2e a eo 
eo) ar - - - = er sin (e - 

r K 

th 
Page 25, 7 equation 

2 
0 3 D C e  ae 

rd 
Page 27, 3 equation 

a00 
eo) ar + ers in  (e - 

0 
3c2 ae 

K a r  
- - 2 + - + er sin (e -eo) - 

r 

3p 3c2 a eo ar - - - = er sin ( e  -eo) 
r K 

0 3 D C2 ae 
- -  - I - -  
ar  er sin (e - e o )  r K 


